Capacitated Fixed Cost Facility Location Problem with Transportation Choices

Hdl Handle:
http://hdl.handle.net/11285/572620
Title:
Capacitated Fixed Cost Facility Location Problem with Transportation Choices
Issue Date:
2007-05-01
Abstract:
In this work a Supply Chain Design problem is addressed. The problem is based on a two-echelon distribution system for a single product. In the system, plants ship the product to distribution centers, and these dispatch the product to the customers. One of the decisions in the problem is to locate the distribution centers among a set of potential sites. There are optional arcs between each pair of facilities in each echelon that represent different transportation channels defined by cost and time parameters. These transportation channels can be seen as transportation modes (rail, truck, airplane, etc.), transportation services from the same company (regular, express, overnight, etc.) or services offered by different companies. At difference of similar models for the same type of problem the transportation channel selection introduces a tradeoff between cost and time. The cause of this tradeoff is that a faster delivery service is usually more expensive. The general problem named "Capacitated Fixed Cost Facility Location Problem with Transportation Choices" (CFCLP-TC) has two objectives: to minimize the cost and to minimize the transportation time from the plants to the customers. The cost criterion is an aggregated function of fixed and variable costs. The time function represents the maximum time that may take to transport the product along any path from the plants to the customers. The mathematical model decides distribution centers location, transportation channel selection, and transportation flows. The aim in the solution of the problem is to present the set of non-dominated alternatives to the decision maker. Therefore it is treated as a bi-objective mixed-integer program that minimizes the time and cost objectives simultaneously. To solve the CFCLP-TC several versions of one algorithm were developed to implement the ?-constraint method. These versions were compared among them and the best was selected to obtain true efficient sets and bound sets for the instances tested. A limit on the size of solvable instances was identified according to the available computational resources. This limit is on instance sizes with 255 binary variables and 940 constraints. Several instances of sizes below this limit were solved with the ?-constraint based algorithm and their true efficient sets were obtained. For instances of larger size a modification to the ?-constraint based algorithm was done to obtain their upper bound sets. Also four lower bounding schemes were studied. These were based on linear relaxations of the mixed-integer program. The relaxation of the set of variables corresponding to the distribution center location resulted in the best lower bound sets. Because of the computational complexity of the CFCLP-TC a metaheuristic algorithm was developed in an attempt to solve it. This algorithm uses some elements from state-ofthe-art metaheuristics for single and multiobjective optimization. The parameters of the i Elias Olivares-Benitez (2007). Capacitated Fixed Cost Facility Location Problem with Transportation Choices. PhD Dissertation, Tecnologico de Monterrey, Monterrey, Mexico, May. algorithm were fixed after some tuning tests. The metaheuristic algorithm was finally tested in instances of small and large sizes. The approximate efficient sets obtained were compared to the true efficient sets for small instances, and to the upper bound sets for large instances. The results indicate an excellent performance of the metaheuristic algorithm in particular for large size instances.
Keywords:
Echelon; Metaheuristic Algorithm
Degree Program:
Programa de Graduados en Ingeniería
Advisors:
Dr. José Luis González Velarde
Committee Member / Sinodal:
Dr. Roger Z. Ríos Mercado
Degree Level:
Doctor en Ciencias de Ingeniería
School:
Escuela de Ciencias Computacionales
Campus Program:
Campus Monterrey
Discipline:
Ingeniería y Ciencias Aplicadas / Engineering & Applied Sciences
Appears in Collections:
Ciencias Exactas

Full metadata record

DC FieldValue Language
dc.contributor.advisorDr. José Luis González Velardees
dc.creatorOlivares Benítez, Elíasen
dc.date.accessioned2015-08-17T11:36:43Zen
dc.date.available2015-08-17T11:36:43Zen
dc.date.issued2007-05-01-
dc.identifier.urihttp://hdl.handle.net/11285/572620en
dc.description.abstractIn this work a Supply Chain Design problem is addressed. The problem is based on a two-echelon distribution system for a single product. In the system, plants ship the product to distribution centers, and these dispatch the product to the customers. One of the decisions in the problem is to locate the distribution centers among a set of potential sites. There are optional arcs between each pair of facilities in each echelon that represent different transportation channels defined by cost and time parameters. These transportation channels can be seen as transportation modes (rail, truck, airplane, etc.), transportation services from the same company (regular, express, overnight, etc.) or services offered by different companies. At difference of similar models for the same type of problem the transportation channel selection introduces a tradeoff between cost and time. The cause of this tradeoff is that a faster delivery service is usually more expensive. The general problem named "Capacitated Fixed Cost Facility Location Problem with Transportation Choices" (CFCLP-TC) has two objectives: to minimize the cost and to minimize the transportation time from the plants to the customers. The cost criterion is an aggregated function of fixed and variable costs. The time function represents the maximum time that may take to transport the product along any path from the plants to the customers. The mathematical model decides distribution centers location, transportation channel selection, and transportation flows. The aim in the solution of the problem is to present the set of non-dominated alternatives to the decision maker. Therefore it is treated as a bi-objective mixed-integer program that minimizes the time and cost objectives simultaneously. To solve the CFCLP-TC several versions of one algorithm were developed to implement the ?-constraint method. These versions were compared among them and the best was selected to obtain true efficient sets and bound sets for the instances tested. A limit on the size of solvable instances was identified according to the available computational resources. This limit is on instance sizes with 255 binary variables and 940 constraints. Several instances of sizes below this limit were solved with the ?-constraint based algorithm and their true efficient sets were obtained. For instances of larger size a modification to the ?-constraint based algorithm was done to obtain their upper bound sets. Also four lower bounding schemes were studied. These were based on linear relaxations of the mixed-integer program. The relaxation of the set of variables corresponding to the distribution center location resulted in the best lower bound sets. Because of the computational complexity of the CFCLP-TC a metaheuristic algorithm was developed in an attempt to solve it. This algorithm uses some elements from state-ofthe-art metaheuristics for single and multiobjective optimization. The parameters of the i Elias Olivares-Benitez (2007). Capacitated Fixed Cost Facility Location Problem with Transportation Choices. PhD Dissertation, Tecnologico de Monterrey, Monterrey, Mexico, May. algorithm were fixed after some tuning tests. The metaheuristic algorithm was finally tested in instances of small and large sizes. The approximate efficient sets obtained were compared to the true efficient sets for small instances, and to the upper bound sets for large instances. The results indicate an excellent performance of the metaheuristic algorithm in particular for large size instances.en
dc.language.isoenen
dc.rightsOpen Accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleCapacitated Fixed Cost Facility Location Problem with Transportation Choicesen
dc.typeTesis de Doctoradoes
thesis.degree.grantorInstituto Tecnológico y de Estudios Superiores de Monterreyes
thesis.degree.levelDoctor en Ciencias de Ingenieríaes
dc.contributor.committeememberDr. Roger Z. Ríos Mercadoes
thesis.degree.disciplineEscuela de Ciencias Computacionaleses
thesis.degree.namePrograma de Graduados en Ingenieríaes
dc.subject.keywordEchelonen
dc.subject.keywordMetaheuristic Algorithmen
thesis.degree.programCampus Monterreyes
dc.subject.disciplineIngeniería y Ciencias Aplicadas / Engineering & Applied Scienceses
All Items in REPOSITORIO DEL TECNOLOGICO DE MONTERREY are protected by copyright, with all rights reserved, unless otherwise indicated.