Publicaciones de Springer relacionadas con el Tecnológico de Monterrey.

Recent Submissions

  • Antimicrobial and antiproliferative activity of essential oil, aqueous and ethanolic extracts of Ocimum micranthum Willd leaves

    Caamal-Herrera, Isabel O; Carrillo-Cocom, Leydi M; Escalante-Réndiz, Diana Y; Aráiz-Hernández, Diana; Azamar-Barrios, José A; Tecnológico de Monterrey (Springer Open, 2018-02-08)
    Abstract Background Ocimum micranthum Willd is a plant used in traditional medicine practiced in the region of the Yucatan peninsula. In particular, it is used for the treatment of cutaneous infections and wound healing, however there are currently no existing scientific studies that support these applications. The aim of the present study was to evaluate the antimicrobial and the in vitro proliferative activity (on healthy mammalian cell lines) of the essential oil and extracts (aqueous and ethanolic) of this plant. Methods The minimal inhibitory concentration (MIC) of essential oil and aqueous and ethanolic extracts of Ocimum micranthum leaves against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans was determined using the microdilution technique. The in vitro proliferative activity of human fibroblast (hFB) and Chinese hamster ovary (CHO-K1) cells treated with these extracts was evaluated using the MTT test. The hFB cell line was also evaluated using Trypan Blue assay. Results Candida albicans was more susceptible to the ethanolic extract and the aqueous extract (MIC value of 5 μL/mL and 80 μL/mL respectively). In the case of Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, the MIC of the aqueous and ethanolic extract was 125 μL/mL. The aqueous extract showed a significant (p < 0.05) antiproliferative effect on hFB cells at a concentration of 4%, with cell proliferation percentage values of 73.56% and 20.59% by MTT method and Trypan Blue assay, respectively; the same effect was observed for the ethanolic extract at concentration from 0.06% to 0.25% using MTT method and at a concentration from 0.125% to 0.25% using Trypan Blue assay. In CHO-K1 cells an antiproliferative effect was observed at a concentration of 8% of aqueous extract and from 0.06% to 0.25% of ethanolic extract using the MTT method. Conclusion These assays showed that low concentrations of essential oil and extracts of Ocimum micranthum leaves are sufficient to cause an antiproliferative effect on the hFB cell line but do not produce an antimicrobial effect against the microorganisms evaluated. More studies are necessary to improve understanding of the mechanism of action of the compounds implicated in the bioactivities shown by the crude extracts.
  • Primary explant culture and collagen I substrate enhances corneal endothelial cell morphology

    Zavala, Judith; Montalvo-Parra, María-Dolores; Guerrero-Ramírez, Guillermo-Isaac; Rodríguez-Barrientos, Carlos-Alberto; Treviño, Victor; Valdez-García, Jorge E (2018-01-18)
    Abstract Objectives Corneal endothelial cell (CEC) isolation and harvest aim to produce engineered grafts to solve donor corneal tissue shortage. To yield high amounts of CEC maintaining morphological and molecular characteristics, several isolation and culture conditions are reported. Here, we combined direct explant culture, with three different coating conditions and a two-step media approach to compare confluence efficiency, morphology, and specific molecular markers expression. Data description Confluence was reached after 2 weeks in the three coating conditions (Matrigel, collagen I, and in uncoated plates) using a two-step approach (proliferative medium without pituitary extract, followed by stabilizer basal medium). Na/K-ATPase and GPC4 markers were detected by immunocytochemistry while GPC4, CD200, and TJP1 by RT-PCR in the three CEC coating culture conditions. CEC in proliferative medium showed spindle morphology in the three conditions. Polygonal morphology was seen in CEC cultures using basal medium under uncoated and collagen I coated plates. CEC cultured in Matrigel-coated plates remained with spindle morphology in basal medium.
  • Electroencephalographic evaluation of acoustic therapies for the treatment of chronic and refractory tinnitus

    Alonso-Valerdi, Luz M.; Ibarra-Zarate, David I; Tavira-Sánchez, Francisco J; Ramírez-Mendoza, Ricardo A; Recuero, Manuel; Tecnológico de Monterrey (Springer, 2017-11-28)
    Abstract Background To date, a large number of acoustic therapies have been applied to treat tinnitus. The effect that produces those auditory stimuli is, however, not well understood yet. Furthermore, the conventional clinical protocol is based on a trial-error procedure, and there is not a formal and adequate treatment follow-up. At present, the only way to evaluate acoustic therapies is by means of subjective methods such as analog visual scale and ad-hoc questionnaires. Methods This protocol seeks to establish an objective methodology to treat tinnitus with acoustic therapies based on electroencephalographic (EEG) activity evaluation. On the hypothesis that acoustic therapies should produce perceptual and cognitive changes at a cortical level, it is proposed to examine neural electrical activity of patients suffering from refractory and chronic tinnitus in four different stages: at the beginning of the experiment, at one week of treatment, at five weeks of treatment, and at eight weeks of treatment. Four of the most efficient acoustic therapies found at the moment are considered: retraining, auditory discrimination, enriched acoustic environment, and binaural. Discussion EEG has become a standard brain imaging tool to quantify and qualify neural oscillations, which are basically spatial, temporal, and spectral patterns associated with particular perceptual, cognitive, motor and emotional processes. Neural oscillations have been traditionally studied on the basis of event-related experiments, where time-locked and phase-locked responses (i.e., event-related potentials) along with time-locked but not necessary phase-locked responses (i.e., event-related (de) synchronization) have been essentially estimated. Both potentials and levels of synchronization related to auditory stimuli are herein proposed to assess the effect of acoustic therapies. Trial registration Registration Number: ISRCTN14553550 . ISRCTN Registry: BioMed Central. Date of Registration: October 31st, 2017.

View more