• Adult white New Zealand rabbit as suitable model for corneal endothelial engineering

      Valdéz García, Jorge E.; Lozano Ramirez, Juan F; Zavala, Judith (Springer Open, 04/02/2015)
      Abstract Background Corneal endothelium engineering is focused in producing transplantable cell sheets to overcome the shortage of corneal graft tissue donors for the treatment of corneal blindness. For this purpose, the use of a proper animal model plays a key role. Corneal parameters of White New Zealand rabbits such as endothelial cell density, central corneal thickness, and corneal diameter decrease with age, similarly as in humans. However, as opposed to humans, they retain the ability to restore their corneal endothelium after injury. Therefore, they are considered as an inappropriate corneal endothelial wound healing model. Findings Here we analyze the corneal endothelium mitotic ability of White New Zealand rabbits aged 3, 6, 12 and 18 months, 36 and 72 hours after thermal injury. The highest mitotic activity was observed in the 3-month rabbits 36 h after wounding. Rabbits of 12 months registered decreased mitotic activity and those of 18 months did not show mitotic activity 72 h after injury. Conclusions These results propose that rabbits of 18 months represent a suitable model for human corneal endothelium engineering research.
    • Altered liver expression of genes involved in lipid and glucose metabolism in mice with partial IGF-1 deficiency: an experimental approach to metabolic syndrome

      Rodríguez de Ita, Julieta; Castilla Cortázar, Isabel; Aguirre, G. A; Sánchez Yago, C.; Santos Ruiz, M. O; Guerra Menéndez, L.; Martín Estal, I.; García Magariño, M.; Lara Díaz, Victor J.; Puche, J. E; Muñoz, U. (Springer Open, 14/10/2015)
      Abstract Background Insulin growth factor 1 (IGF-1) has multiple effects on metabolism. Much evidence suggests that the deficiency of this hormone increases insulin resistance, impairs lipid metabolism, augments oxidative damage and deregulates the neuro-hormonal axis. An inverse relationship between IGF-1 levels and the prevalence of Metabolic Syndrome (MetS) with its cardiovascular complications has been identified. However, the underlying mechanisms linking IGF-1 and MetS are still poorly understood. In order to elucidate such mechanisms, the aim of this work was to study, in mice with partial IGF-1 deficiency, liver expression of genes involved in glucose and lipid metabolism as well as serum levels of glucose, triglycerides and cholesterol, as well as liver malondialdehyde (MDA) levels, as a marker for oxidative damage. Methods Three experimental groups were studied in parallel: Controls (CO), wild type mice (igf-1 +/+); untreated heterozygous mice (Hz, igf-1 +/−) and Hz (igf-1 +/−) mice treated with low doses of IGF-1 for 10 days (Hz + IGF-1). Results A reduction of IGF-1 serum levels in the Hz group was found, which was normalized by IGF-1 therapy. Serum levels of glucose, triglycerides and cholesterol were significantly increased in the untreated Hz group as compared to both controls and Hz + IGF-1 groups. The expression of genes involved in gluconeogenesis, glycogenolysis, lipid synthesis and transport, and catabolism were altered in untreated Hz animals and the expression of most of them was normalized by IGF-1 therapy; MDA was also significantly increased in the Hz untreated group. Conclusions The mere partial IGF-1 deficiency is responsible for the reduction in the expression of genes involved in glucose and lipid metabolism, resulting in dyslipidemia and hyperglycemia. Such genetic alterations may seriously contribute to the establishment of MetS.
    • Antimicrobial and antiproliferative activity of essential oil, aqueous and ethanolic extracts of Ocimum micranthum Willd leaves

      Caamal-Herrera, Isabel O; Carrillo-Cocom, Leydi M; Escalante-Réndiz, Diana Y; Aráiz-Hernández, Diana; Azamar-Barrios, José A; Tecnológico de Monterrey (Springer Open, 2018-02-08)
      Abstract Background Ocimum micranthum Willd is a plant used in traditional medicine practiced in the region of the Yucatan peninsula. In particular, it is used for the treatment of cutaneous infections and wound healing, however there are currently no existing scientific studies that support these applications. The aim of the present study was to evaluate the antimicrobial and the in vitro proliferative activity (on healthy mammalian cell lines) of the essential oil and extracts (aqueous and ethanolic) of this plant. Methods The minimal inhibitory concentration (MIC) of essential oil and aqueous and ethanolic extracts of Ocimum micranthum leaves against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans was determined using the microdilution technique. The in vitro proliferative activity of human fibroblast (hFB) and Chinese hamster ovary (CHO-K1) cells treated with these extracts was evaluated using the MTT test. The hFB cell line was also evaluated using Trypan Blue assay. Results Candida albicans was more susceptible to the ethanolic extract and the aqueous extract (MIC value of 5 μL/mL and 80 μL/mL respectively). In the case of Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, the MIC of the aqueous and ethanolic extract was 125 μL/mL. The aqueous extract showed a significant (p < 0.05) antiproliferative effect on hFB cells at a concentration of 4%, with cell proliferation percentage values of 73.56% and 20.59% by MTT method and Trypan Blue assay, respectively; the same effect was observed for the ethanolic extract at concentration from 0.06% to 0.25% using MTT method and at a concentration from 0.125% to 0.25% using Trypan Blue assay. In CHO-K1 cells an antiproliferative effect was observed at a concentration of 8% of aqueous extract and from 0.06% to 0.25% of ethanolic extract using the MTT method. Conclusion These assays showed that low concentrations of essential oil and extracts of Ocimum micranthum leaves are sufficient to cause an antiproliferative effect on the hFB cell line but do not produce an antimicrobial effect against the microorganisms evaluated. More studies are necessary to improve understanding of the mechanism of action of the compounds implicated in the bioactivities shown by the crude extracts.
    • Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations

      de Crécy Lagard, Valérie; El Yacoubi, Basma; de la Garza, Rocío D; Noiriel, Alexandre; Hanson, Andrew D; Tecnologico de Monterrey (Open Access Publisher, 23/07/2007)
      Abstract Background Folate synthesis and salvage pathways are relatively well known from classical biochemistry and genetics but they have not been subjected to comparative genomic analysis. The availability of genome sequences from hundreds of diverse bacteria, and from Arabidopsis thaliana, enabled such an analysis using the SEED database and its tools. This study reports the results of the analysis and integrates them with new and existing experimental data. Results Based on sequence similarity and the clustering, fusion, and phylogenetic distribution of genes, several functional predictions emerged from this analysis. For bacteria, these included the existence of novel GTP cyclohydrolase I and folylpolyglutamate synthase gene families, and of a trifunctional p-aminobenzoate synthesis gene. For plants and bacteria, the predictions comprised the identities of a 'missing' folate synthesis gene (folQ) and of a folate transporter, and the absence from plants of a folate salvage enzyme. Genetic and biochemical tests bore out these predictions. Conclusion For bacteria, these results demonstrate that much can be learnt from comparative genomics, even for well-explored primary metabolic pathways. For plants, the findings particularly illustrate the potential for rapid functional assignment of unknown genes that have prokaryotic homologs, by analyzing which genes are associated with the latter. More generally, our data indicate how combined genomic analysis of both plants and prokaryotes can be more powerful than isolated examination of either group alone.
    • Competencias informáticas para el e-learning 2.0

      Valerio Ureña, Gabriel; Valenzuela González, Jaime R. (2013-09-10)
    • A computer simulation model of Wolbachia invasion for disease vector population modification

      Guevara Souza, Mauricio; Vallejo Clemente, Edgar E.; Tecnologico de Monterrey (Open Access Publisher, 05/10/2015)
      Abstract Background Wolbachia invasion has been proved to be a promising alternative for controlling vector-borne diseases, particularly Dengue fever. Creating computer models that can provide insight into how vector population modification can be achieved under different conditions would be most valuable for assessing the efficacy of control strategies for this disease. Methods In this paper, we present a computer model that simulates the behavior of native mosquito populations after the introduction of mosquitoes infected with the Wolbachia bacteria. We studied how different factors such as fecundity, fitness cost of infection, migration rates, number of populations, population size, and number of introduced infected mosquitoes affect the spread of the Wolbachia bacteria among native mosquito populations. Results Two main scenarios of the island model are presented in this paper, with infected mosquitoes introduced into the largest source population and peripheral populations. Overall, the results are promising; Wolbachia infection spreads among native populations and the computer model is capable of reproducing the results obtained by mathematical models and field experiments. Conclusions Computer models can be very useful for gaining insight into how Wolbachia invasion works and are a promising alternative for complementing experimental and mathematical approaches for vector-borne disease control.
    • Effects of bone marrow cell transplant on thyroid function in an I131-induced low T4 and elevated TSH rat model

      Guajardo Salinas, Gustavo E.; Carvajal, Juan A.; Gaytan Ramos, Ángel A.; Arroyo, Luis; López Reyes, Alberto G.; Islas, José F.; Cano, Beiman G.; Arroyo Currás, Netzahualcoyótl; Dávalos, Alfredo; Madrid, Gloria; Moreno Cuevas, Jorge E.; Tecnologico de Monterrey (Open Access Publisher, 18/01/2007)
      Abstract Background We developed a study using low dose radioactive iodine creating an animal model of transient elevation of thyroid stimulating hormone (TSH). Male derived bone marrow cells were transplanted to asses their effect on thyroid function and their capability to repair the thyroid parenchyma. Results At 40 an 80 days after I131 treatment, the study groups TSH and T4 serum values both increased and decreased significantly respectively compared to the negative control group. Eight weeks after cell transplantation, neither TSH nor T4 showed a significant difference in any group. The mean number of SRY gene copies found in group I (Left Intracardiac Transplant) was 523.3 and those in group II (Intrathyroid Transplant) were only 73. Group III (No Transplant) and IV had no copies. Group I presented a partial restore of the histological pattern of rat thyroid with approximately 20% – 30% of normal-sized follicles. Group II did not show any histological differences compared to group III (Positive control). Conclusion Both a significant increase of TSH and decrease of T4 can be induced as early as day 40 after a low dose of I131 in rats. Restore of normal thyroid function can be spontaneously achieved after using a low dose RAI in a rat model. The use of BM derived cells did not affect the re-establishment of thyroid function and might help restore the normal architecture after treatment with RAI.
    • Electroencephalographic evaluation of acoustic therapies for the treatment of chronic and refractory tinnitus

      Alonso-Valerdi, Luz M.; Ibarra-Zarate, David I; Tavira-Sánchez, Francisco J; Ramírez-Mendoza, Ricardo A; Recuero, Manuel; Tecnológico de Monterrey (Springer, 2017-11-28)
      Abstract Background To date, a large number of acoustic therapies have been applied to treat tinnitus. The effect that produces those auditory stimuli is, however, not well understood yet. Furthermore, the conventional clinical protocol is based on a trial-error procedure, and there is not a formal and adequate treatment follow-up. At present, the only way to evaluate acoustic therapies is by means of subjective methods such as analog visual scale and ad-hoc questionnaires. Methods This protocol seeks to establish an objective methodology to treat tinnitus with acoustic therapies based on electroencephalographic (EEG) activity evaluation. On the hypothesis that acoustic therapies should produce perceptual and cognitive changes at a cortical level, it is proposed to examine neural electrical activity of patients suffering from refractory and chronic tinnitus in four different stages: at the beginning of the experiment, at one week of treatment, at five weeks of treatment, and at eight weeks of treatment. Four of the most efficient acoustic therapies found at the moment are considered: retraining, auditory discrimination, enriched acoustic environment, and binaural. Discussion EEG has become a standard brain imaging tool to quantify and qualify neural oscillations, which are basically spatial, temporal, and spectral patterns associated with particular perceptual, cognitive, motor and emotional processes. Neural oscillations have been traditionally studied on the basis of event-related experiments, where time-locked and phase-locked responses (i.e., event-related potentials) along with time-locked but not necessary phase-locked responses (i.e., event-related (de) synchronization) have been essentially estimated. Both potentials and levels of synchronization related to auditory stimuli are herein proposed to assess the effect of acoustic therapies. Trial registration Registration Number: ISRCTN14553550 . ISRCTN Registry: BioMed Central. Date of Registration: October 31st, 2017.
    • Inferring modules of functionally interacting proteins using the Bond Energy Algorithm

      Watanabe, Ryosuke L.; Morett, Enrique; Vallejo Clemente, Edgar E.; Tecnologico de Monterrey (Open Access Publisher, 2008-06-17)
      Abstract Background Non-homology based methods such as phylogenetic profiles are effective for predicting functional relationships between proteins with no considerable sequence or structure similarity. Those methods rely heavily on traditional similarity metrics defined on pairs of phylogenetic patterns. Proteins do not exclusively interact in pairs as the final biological function of a protein in the cellular context is often hold by a group of proteins. In order to accurately infer modules of functionally interacting proteins, the consideration of not only direct but also indirect relationships is required. In this paper, we used the Bond Energy Algorithm (BEA) to predict functionally related groups of proteins. With BEA we create clusters of phylogenetic profiles based on the associations of the surrounding elements of the analyzed data using a metric that considers linked relationships among elements in the data set. Results Using phylogenetic profiles obtained from the Cluster of Orthologous Groups of Proteins (COG) database, we conducted a series of clustering experiments using BEA to predict (upper level) relationships between profiles. We evaluated our results by comparing with COG's functional categories, And even more, with the experimentally determined functional relationships between proteins provided by the DIP and ECOCYC databases. Our results demonstrate that BEA is capable of predicting meaningful modules of functionally related proteins. BEA outperforms traditionally used clustering methods, such as k-means and hierarchical clustering by predicting functional relationships between proteins with higher accuracy. Conclusion This study shows that the linked relationships of phylogenetic profiles obtained by BEA is useful for detecting functional associations between profiles and extending functional modules not found by traditional methods. BEA is capable of detecting relationship among phylogenetic patterns by linking them through a common element shared in a group. Additionally, we discuss how the proposed method may become more powerful if other criteria to classify different levels of protein functional interactions, as gene neighborhood or protein fusion information, is provided.
    • Insulin-like growth factor-1 deficiency and metabolic syndrome

      Aguirre, G. A.; Rodríguez de Ita, Julieta; De la Garza, R. G.; Castilla Cortázar, Isabel; Tecnologico de Monterrey (Open Access Publisher, 06/01/2016)
    • Integration and comparison of different genomic data for outcome prediction in cancer

      Gomez Rueda, Hugo; Martínez Ledesma, Emmanuel; Martínez Torteya, Antonio; Palacios Corona, Rebeca; Treviño, Victor; Tecnologico de Monterrey (Open Access Publisher, 29/10/2005)
      In cancer, large-scale technologies such as next-generation sequencing and microarrays have produced a wide number of genomic features such as DNA copy number alterations (CNA), mRNA expression (EXPR), microRNA expression (MIRNA), and DNA somatic mutations (MUT), among others. Several analyses of a specific type of these genomic data have generated many prognostic biomarkers in cancer. However, it is uncertain which of these data is more powerful and whether the best data-type is cancer-type dependent. Therefore, our purpose is to characterize the prognostic power of models obtained from different genomic data types, cancer types, and algorithms. For this, we compared the prognostic power using the concordance and prognostic index of models obtained from EXPR, MIRNA, CNA, MUT data and their integration for ovarian serous cystadenocarcinoma (OV), multiform glioblastoma (GBM), lung adenocarcinoma (LUAD), and breast cancer (BRCA) datasets from The Cancer Genome Atlas repository. We used three different algorithms for prognostic model selection based on constrained particle swarm optimization (CPSO), network feature selection (NFS), and least absolute shrinkage and selection operator (LASSO).
    • Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

      Arora, Pankaj K.; Sharma, Ashutosh; Mehta, Richa; Shenoy, Belle D.; Srivastava, Alok; Singh, Vijay P.; Tecnologico de Monterrey (Open Access Publisher, 21/11/2012)
      Abstract Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium.
    • Metrics to estimate differential co-expression networks

      Gonzalez-Valbuena, Elpidio-Emmanuel; Trevino, Victor; Tecnologico de Monterrey (BioMed Central, 2017-11-10)
      Abstract Background Detecting the differences in gene expression data is important for understanding the underlying molecular mechanisms. Although the differentially expressed genes are a large component, differences in correlation are becoming an interesting approach to achieving deeper insights. However, diverse metrics have been used to detect differential correlation, making selection and use of a single metric difficult. In addition, available implementations are metric-specific, complicating their use in different contexts. Moreover, because the analyses in the literature have been performed on real data, there are uncertainties regarding the performance of metrics and procedures. Results In this work, we compare four novel and two previously proposed metrics to detect differential correlations. We generated well-controlled datasets into which differences in correlations were carefully introduced by controlled multivariate normal correlation networks and addition of noise. The comparisons were performed on three datasets derived from real tumor data. Our results show that metrics differ in their detection performance and computational time. No single metric was the best in all datasets, but trends show that three metrics are highly correlated and are very good candidates for real data analysis. In contrast, other metrics proposed in the literature seem to show low performance and different detections. Overall, our results suggest that metrics that do not filter correlations perform better. We also show an additional analysis of TCGA breast cancer subtypes. Conclusions We show a methodology to generate controlled datasets for the objective evaluation of differential correlation pipelines, and compare the performance of several metrics. We implemented in R a package called DifCoNet that can provide easy-to-use functions for differential correlation analyses.
    • Modelling gene expression profiles related to prostate tumor progression using binary states

      Martinez, Emmanuel; Trevino, Victor (Open Access Publisher, 31/05/2013)
      Abstract Background Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression. Methods We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets. Results We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings. Conclusions Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies.
    • Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee

      González Alvarez, Rafael; Garza Rodríguez, María; Delgado Enciso, Iván; Treviño Alvarado, Víctor M.; Canales Del Castillo, Ricardo; Martínez De Villarreal, Laura E.; Lugo Trampe, Ángel; Tejero, María E.; Schlabritz Loutsevitch, Natalia E.; Rocha Pizaña, María; Cole, Shelley A.; Reséndez Pérez, Diana; Moises Alvarez, Mario; Comuzzie, Anthony G.; Barrera Saldaña, Hugo A.; Garza Guajardo, Raquel; Barboza Quintana, Oralia; Rodríguez Sánchez, Irám P. (Springer Open, 12/06/2015)
      Abstract Background Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expression profile and orthology in RARRES2 genes are unknown aspects in the biology of this multigene family in primates. Thus; we attempt to describe expression profile and phylogenetic relationship as complementary knowledge in the function of this gene in primates. To do that, we performed A RT-PCR from different tissues obtained during necropsies. Also we tested the hypotheses of positive evolution, purifying selection, and neutrality. And finally a phylogenetic analysis was made between primates RARRES2 protein. Results RARRES2 transcripts were present in liver, lung, adipose tissue, ovary, pancreas, heart, hypothalamus and pituitary tissues. Expression in kidney and leukocytes were not detectable in either species. It was determined that the studied genes are orthologous. Conclusions RARRES2 evolution fits the hypothesis of purifying selection. Expression profiles of the RARRES2 gene are similar in baboons and chimpanzees and are also phylogenetically related.
    • Novel way to investigate evolution of children refractory epilepsy by complexity metrics in massive information

      Zavala Yoe, Ricardo; Ramírez Mendoza, Ricardo A.; Cordero, Luz M.; Tecnologico de Monterrey (SpringerOpen Journal, 21/08/2015)
      Abstract Epilepsy demands a major burden at global levels. Worldwide, about 1% of people suffer epilepsy and 30% of them (0.3%) are anticonvulsants resistant. Among them, some children epilepsies are peculiarly difficult to deal with as Doose syndrome (DS). Doose syndrome is a very complicated type of children cryptogenic refractory epilepsy (CCRE) which is traditionally studied by analysis of complex electrencephalograms (EEG) by neurologists. CCRE are affections which evolve in a course of many years and customarily, questions such as on which year was the kid healthiest (less seizures) and on which region of the brain (channel) the affection has been progressing more negatively are very difficult or even impossible to answer as a result of the quantity of EEG recorded through the patient’s life. These questions can now be answered by the application of entropies to massive information contained in many EEG. CCRE can not always be cured and have not been investigated from a mathematical viewpoint as far as we are concerned. In this work, a set of 80 time series (distributed equally in four yearly recorded EEG) is studied in order to support pediatrician neurologists to understand better the evolution of this syndrome in the long term. Our contribution is to support multichannel long term analysis of CCRE by observing simple entropy plots instead of studying long rolls of traditional EEG graphs. A comparative analysis among aproximate entropy, sample entropy, our versions of multiscale entropy (MSE) and composite multiscale entropy revealed that our refined MSE was the most convenient complexity measure to describe DS. Additionally, a new entropy parameter is proposed and is referred to as bivariate MSE (BMSE). Such BMSE will provide graphical information in much longer term than MSE.
    • Primary retroperitoneal mucinous cystadenocarcinoma: report of two cases

      de León, David C.; Pérez Montiel, Delia; Chanona Vilchis, José; Dueñas González, Alfonso; Villavicencio Valencia, Verónica; Zavala Casas, Gladys (BioMed Central Ltd, 15/01/2007)
      Abstract Background Retroperitoneal cystadenocarcinomas are rare lesions, the majority of cases presented as one-patient reports. Methods We present two cases of retroperitoneal cystadenocarcinoma, both in women of reproductive age: one with aggressive behavior, and the remaining case, with a more indolent clinical evolution. Results One case presented as pelvic tumor, was treated with surgical resection of the disease, but manifested with recurrent disease a few months later despite use of chemotherapy. The second case involved a patient with diagnosis of abdominal tumor; during laparotomy, a retroperitoneal tumor was found and was totally removed. At follow-up, the patient is disease-free with no other treatment. Conclusion The behavior and treatment of retroperitoneal cystadenocarcinoma are controversial. We suggest aggressive surgery including radical hysterectomy and bilateral salpingoopherectomy with adjuvant chemotherapy in these cases.
    • Protective mechanisms of medicinal plants targeting hepatic stellate cell activation and extracellular matrix deposition in liver fibrosis

      Duval, Florent; Moreno Cuevas, Jorge E.; González Garza y Barrón, María T.; Rodríguez Montalvo, Carlos; Cruz Vega, Delia E. (Springer Open, 24/12/2014)
      Abstract During chronic liver injury, hepatic stellate cells (HSC) are activated and proliferate, which causes excessive extracellular matrix (ECM) deposition, leading to scar formation and fibrosis. Medicinal plants are gaining popularity as antifibrotic agents, and are often safe, cost-effective, and versatile. This review aims to describe the protective role and mechanisms of medicinal plants in the inhibition of HSC activation and ECM deposition during the pathogenesis of liver fibrosis. A systematic literature review on the anti-fibrotic mechanisms of hepatoprotective plants was performed in PubMed, which yielded articles about twelve relevant plants. Many of these plants act via disruption of the transforming growth factor beta 1 signaling pathway, possibly through reduction in oxidative stress. This reduction could explain the inhibition of HSC activation and reduction in ECM deposition. Medicinal plants could be a source of anti-liver fibrosis compounds.
    • Protein adsorption through Chitosan–Alginate membranes for potential applications

      Murguía Flores, Dennise A.; Bonilla Ríos, Jaime; Canales Fiscal, Martha R.; Sánchez Fernández, Antonio; Tecnologico de Monterrey (Springer Open, 30/04/2016)
      Abstract Background Chitosan and Alginate were used as biopolymers to prepare membranes for protein adsorption. The network requires a cross-linker able to form bridges between polymeric chains. Viscopearl-mini® (VM) was used as a support to synthesize them. Six different types of membranes were prepared using the main compounds of the matrix: VM, Chitosan of low and medium molecular weight, and Alginate. Results Experiments were carried out to analyze the interactions within the matrix and improvements were found against porous cellulose beads. SEM characterization showed dispersion in the compounds. According to TGA, thermal behaviour remains similar for all compounds. Mechanical tests demonstrate the modulus of the composites increases for all samples, with major impact on materials containing VM. The adsorption capacity results showed that with the removal of globular protein, as the adsorbed amount increased, the adsorption percentage of Myoglobin from Horse Heart (MHH) decreased. Molecular electrostatic potential studies of Chitosan–Alginate have been performed by density functional theory (DFT) and ONIOM calculations (Our own N-layered integrated molecular orbital and molecular mechanics) which model large molecules by defining two or three layers within the structure that are treated at different levels of accuracy, at B3LYP/6-31G(d) and PM6/6-31G(d) level of theory, using PCM (polarizable continuum model) solvation model. Conclusions Finally, Viscopearl-mini® acts as a suitable support on the matrix for the synthesis of Chitosan–Alginate membranes instead of cross-linkers usage. Therefore, it suggests that it is a promise material for potential applications, such as: biomedical, wastewater treatment, among others. Graphical abstract Chitosan, Alginate, and Cellulose beads-based membranes for protein adsorption. Special attention was given for preparation, charaterization, adsorption capacity, and molecular electrostatic potential studies calculation. Viscopearl-mini® gives support on the matrix of Chitosan–Alginate membranes instead of cross-linkers usage